
Google Chrome:
Proposed Feature

Thick Glitches
Tyler Mainguy, Liam Walsh, Andrea Perera-Ortega, Jessica Dassanayake, Alastair Lewis,
Brendan Kolisnik

Introduction

Proposed Feature: Safe Mode

● Ideal for kids or people at work
● Allows user to censor instances of pre-set

blacklisted words on a webpage deemed as
inappropriate

● Blocks out media with inappropriate file names
● Can be activated/deactivated with a user entered

password
● Utilizes all of the subsystems

Recall: Conceptual Architecture

Legend

subsystem

dependency

Alternative Approach

1. Filter activated through Chrome settings
2. Check password against value in storage module
3. User loads the webpage
4. Content engine begins to build the DOM tree
5. Fetch blacklisted from content engine
6. Parses tag content as DOM tree built
7. Return filtered page back to user

Proposed Approach
1. Activates filter using UI button beside the URL bar and enters the username and

password

2. Checks username and password against storage module

3. Content engine builds the DOM tree for the site

4. Feature searches the tree for illicit content using the Boyer-Moore algorithm for
the text of each HTML tag in the DOM tree.

5. Replace each instance of illicit content with censor.

6. Blacklisted words are stored in an array in the storage system

7. Applies the filtering to URL searches

Risks and Limitations of Proposed Approach

Risks
● Account management / password recovery system
● Man in the middle attacks for server communication

(needs to be encrypted).
● Risk to children

Limitations
● Requires an internet connection to recover password (need internet for browsing

anyways)
● Requires an email address
● Not a perfect form of censorship some content may not get censored (media

with no indication of their content in their filepath)

SAAM Analysis First Approach

SAAM Analysis Second Approach

SAAM Analysis Comparison
NFRs Implementation 1: Implementation 2:

Maintainability
● Only one area of code to be maintained in

the system
● Several different sections of

code to maintain that exist in
seperate parts of the architecture

Performance

● Single pass of the DOM Tree improves run
time efficiency of filtering out blacklisted
content

● Poor performance as many
subsystems are interacted with
on the retrieval of the blacklist
and then two passes over the
dom tree takes more time then
one

Reusability

● Poor reusability as the code is added into the
actual rendering process and is tightly
coupled to the parsing process

● The actual filtering
implementation is seperate from
the rest of implementation of the
addition so that aspect can be
easily reused

SAAM Analysis Decision: Second Approach

NFRs
Stakeholders

Google Development Team Users

Maintainability

● Easier to maintain the actual
filtering process as it is separate
from other Chrome functionality

● A more maintainable architecture for
the addition makes it less likely for the
code to have bugs or errors and display
blacklisted content as a result

● The blacklist is kept in storage which
means that the user can easily add or
remove desired content from the
blacklist

Reusability

● Retrieving and filtering out blacklisted
content are two distinct sections of code
that can be extracted and reused in
another environment if desired

● The process of retrieving blacklists from
the storage is its own process or code
so it could be reused to also blacklist
pictures, ads or anything other than
text.

Potential Impacted Architecture

Content Engine ➢ Traverses DOM tree after creation

Browser ➢ Logic behind enabling/disabling safe mode

Storage
➢ Fetching blacklisted words,
➢ Account info storage

User Interface
➢ Buttons for enabling/disabling safe mode
➢ Entering password

Networking
➢ Resetting password through email (Google

SMTP)

Testing Interactions with Current System

Test Case Input Output Interactions

Blacklisted word in the
web page content

“Go to h*ll” “Go to heck” Safe mode will change how the content engine
renders the finished product bitmap for any given web
page containing prohibited words

Blacklisted word in
filename of media

explicit-image.jpg [redacted] Safe mode will prevent the content engine from
rendering any media with a prohibited word in its file
name

Turn off filter temporarily
with password

******** Filter temporarily
turned off

Safe mode will interact with the browser engine to
enable its filter via the chrome settings, using a
password, which is stored in the Storage subsystem

Reset password with
email

Click: Reset
Password

Password reset
link has been sent
to your email

Safe mode will interact with the networking
subsystem, and use Gmail’s SMTP server to send an
email to reset your password

● What does it allow Chrome to do?
○ Sandboxing processes

■ Async requests confirm failed processes don’t block browser I/O
thread

■ Restrict processes network requests and system access by
facilitating requests through single access point

○ Execution speed increases
■ Requests to access data made by processes independent of one

another
● Concurrency of our Implementation

○ Each filter running concurrently
○ Fetching of blacklisted sites concurrent while DOM tree built
○ Otherwise concurrency preserved with implementation

ConcurrencyThe Effects of Concurrency

Team Issues

● Implementing a
new feature will
affect multiple
subsystems
and the
development
teams assigned
to them

● Not an
independent
process due to
coupling

Limitations & Lessons Learned
Lessons Learned

● Practical and tangible experience
○ Implementing our proposed feature

● Easier to get into smooth workflow
○ Developed solid working habits

from A1 & A2
○ Know the strengths and

weaknesses of each group
member, delegate content
accordingly

Limitations
● Last week of the semester

○ Busy schedules
● Different from A1 & A2

○ New approach and different
material to discuss

Conclusion

● The motivation behind the feature is
to control the content that is
accessible to certain users

● Utilized SAAM analysis to determine
the best approach

● All five subsystems are impacted by
the realization of Chrome Safe Mode

● The object-oriented architecture
style allows for modularity in
implementing the new feature

Questions?

